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ABSTRACT

With network speeds faster than they have ever been before, the once prominent dis-

tinction between local and remote execution is now rapidly disappearing. This has allowed

users to begin exploring methods of running their analyses on remote devices that are not

only more powerful, but often more suited to their analyses. No longer are users constrained

by the limited capabilities of their local devices. Instead, with little effort, they can now

access high-performance clouds and clusters, where their execution needs can be more than

satisfied. As such, the world is experiencing a shift away from general-purpose devices that

can be used for diverse applications. The modern age of computing is one of specialization,

with special-purpose hardware being carefully optimized for particular applications. In such

an environment of ubiquitous heterogeneity, there is an increasing need to automate the

selection of hardware for arbitrary computations. However, the question of where to run

a computation is full of complexities, and depends on a multidimensional array of factors,

including task performance, communication costs, and resource-provisioning delays. The

goal of this work is to develop techniques to model these different factors as part of a single

comprehensive framework for heterogeneous execution. To accomplish this goal, we build

upon existing work on function-serving platforms, since functions represent a convenient ab-

straction for remote computation. Our contributions in this work are threefold. First, we

demonstrate that there are inescapable trade-offs between compute times, network speeds,

start-up delays, and other latencies, which must be accounted for in the choice of hardware

and location for computations. Second, we present Delta, a framework for heterogeneous

function execution that is designed to account for these trade-offs, and provides improved

performance by taking advantage of the heterogeneity in compute resources. Finally, we de-

fine a research agenda in this space, and motivate future work with the intention of building

a world where fluid computation can exist.
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CHAPTER 1

INTRODUCTION

The last decade of advances in computing has brought about a revolution in how we

think about computation. With the end of Moore’s law and an inherent limitation in scaling

up general-purpose CPUs, the world is rapidly moving towards the natural next step in

improving application performance — specialization. That is, instead of being limited by

devices that are made for general use, users are developing specialized hardware that is

optimized for their particular applications. Hardware specialization is quickly becoming not

only the most efficient, but also the cheapest method of meeting performance requirements.

Further, with network speeds increasing at a dramatic rate [1], it has never been easier for

users to offload their analyses from their local desktops to remote machines that are more

powerful, and often more suited to their specific computations.

Being able to offload computations in this way requires us to meet two distinct but

complementary objectives. First, we need sophisticated infrastructure to handle remote task

execution in a reliable and efficient manner. This objective is met, at least in part, by the

advent of modern function-serving platforms such as funcX [2], which provide convenient

abstractions for executing function calls on remote machines. Second, we need the ability

to determine which remote machines are best suited for given computations — making this

choice, quickly and reliably, is the focus of this work.

As the heterogeneity of devices grows, the choice of where to run a particular computation

only becomes more complex. Selecting a destination for a computation is not simply a matter

of choosing the fastest device, or even the closest one. Instead, the true “speed” of a device

for a given application depends on a combination of factors, including the compute time,

the network latency to the device, the time to provision a suitable compute environment,

and the delay of transferring data. This fundamental idea, that the speed of computation

depends not on one single cost, but on an amalgamation of seemingly orthogonal costs, has
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been referred to as the computing continuum [3].

Consider, for example, a high-energy physics application that collects data at the Fermi

National Accelerator Laboratory, and needs to run trigger analysis on it, regularly and

with low latency [4]. It can either run this analysis on a local CPU, which would take 2

seconds, or it can offload this analysis to an Field Programmable Gate Array (FPGA) that is

optimized for this task and can run this computation in 30ms. Suppose this FPGA is located

in Amazon Web Service’s cloud in Virginia, which with speed-of-light communication, is a

network latency of 10ms away. Running the trigger analysis on this FPGA would provide a

total execution time of 50ms, which is 40 times faster than running on the local CPU. There is

no dearth of such high-performance applications which would benefit from the correct choice

of execution device, thereby reinforcing the need to build a system that can autonomously

learn to make such choices.

Perhaps unsurprisingly, such trade-off analysis can be extended beyond the two variables

of compute time and network latency. Often, computations require substantial amounts of

data that must first be transferred to the compute location, which bears additional over-

heads. Moreover, compute resources are often shared between multiple applications, and

sometimes even multiple users, which introduces further delays. Our goal in this work is

to account for these multidimensional trade-offs, and build a new model of computing that

allows computations to be run on the devices that are most effective for them.

To capture the computing continuum, we build upon existing Function-as-a-Service

(FaaS) infrastructure, since the FaaS model encapsulates the idea of abstracting remote

computation. We simply borrow this model of remote computation as a way of thinking

about computing in a federated environment. The emergence of FaaS has transformed how

users think about computation, by allowing them to work at the function abstraction level,

thus avoiding the need to manually deploy any execution infrastructure. Much in the same

way, we would like our continuum model of computation to afford users the opportunity to
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worry only about developing their applications, with all other aspects of running computa-

tions taken care of automatically. Moreover, working with modular functions, as opposed to

monolithic applications, allows us to efficiently and reliably learn the runtime behavior of

different computations on heterogeneous devices, while still allowing users to fully express

the complexities of their tasks.

Existing FaaS frameworks are designed for one or more consumers to execute functions on

a single, typically homogenous cloud. The task of realizing a fluid and federated computing

model, however, requires more than anything the ability to run on a distributed ecosystem of

heterogeneous devices, ideally on a single federated platform. Thus, our ideal testing ground

is a FaaS framework that allows arbitrary devices to be connected as remote destinations

for incoming computations. A FaaS framework that was developed with exactly this goal in

mind is funcX [2]. Unlike most FaaS systems, funcX allows users to register devices of their

choice as endpoints on which they can then execute functions. The bar for what is an eligible

endpoint is quite low — if a machine can run Python, it can run funcX . This makes funcX

an especially enticing choice for an execution fabric upon which the computing continuum

can be built, since it allows us to easily connect a wide array of heterogeneous devices on a

single federated grid.

Our contributions can be roughly categorized into three areas:

• First, we demonstrate the existence of ubiquitous trade-offs between latency, runtime,

and data transfer costs in the context of function execution.

• Second, we present Delta — Distributed Execution of Lambdas using Trade-off Analysis

— a proof-of-concept framework for heterogeneous function execution built on funcX

that automatically learns to take advantage of these trade-offs, and yields improved

performance by exploiting the heterogeneity in available devices.

• Third, we define a research agenda in this space and motivate directions for future

work, with the hope of one day truly realizing the computing continuum.
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The rest of this document is organized as follows. Chapter 2 provides a summary of

related work. Chapter 3 outlines our guiding research questions, and formalizes the prob-

lem at hand. Chapter 4 describes various components of Delta, including details about its

architecture. Chapter 5 uses experimental evidence to show how Delta performs on various

realistic workloads. Finally, Chapter 6 concludes, and highlights directions for future work.
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CHAPTER 2

RELATED WORK

Our work builds upon decades of foundational research in the domain of distributed

computing, going back as far as the introduction of grid computing, and leading up to recent

work in programming heterogeneous devices, as well as the rise of modern function-serving

platforms.

2.1 Grid Computing

In the late 1990s and the early 2000s, there were efforts to create a new paradigm of

distributed computing, one that enabled the sharing of computational resources on phenom-

enally large scales and across administrative domains, with sophisticated provisions for the

dynamic and complex use-cases that real-world science often requires. This paradigm was

referred to as grid computing [5]. The allure of grid computing arose from its bold foresight

— a world where access to compute resources would be as common as access to electricity [6].

The development of such a grid of computational resources did not come without multidi-

mensional challenges. These challenges included the development of methods for controlling

different types of remote machines [7], standard protocols for communication between ap-

plications and their requested resources [8], as well as a trust fabric to ensure authenticated

and authorized access to parts of the grid [9].

The grid is often thought of as a precursor to the familiar cloud computing paradigms

that are widely available today, such as those offered by Amazon [10], Google [11], and

Microsoft [12]. Modern cloud providers promise vast amounts of computation power to

anyone willing to pay. Yet, in some senses, the notion of the grid is much more far-reaching

than that of a centralized cloud [13]. The grid is inherently a distributed idea, and is thus

not restricted to resources on any one cloud. Instead, the essence of the grid is in connecting
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scattered resources — locally, in the cloud, in supercomputing clusters, and on the edge.

In this sense, the grid is, at its core, defined by its potential for heterogeneity. Our work

intends to reimagine this vision of the grid, by developing techniques that automatically

take advantage of its intrinsic heterogeneity. While the original model of grid computing

focused on stiching together resources in large units, our work aims to apply grid computing

techniques at a more fine-grained level — i.e., to link together smaller individual computers

with diverse capabilities in order to fluidly execute granular computations on them.

2.2 Heterogeneous Computing

Having embarked on a journey that involves using the diverse capabilities of heteroge-

neous devices, the natural next question is how to actually program across these devices. In

cases where the heterogeneity is mainly in the parallelism scale available, several solutions

exist. Popular data-parallel computation frameworks such as Hadoop [14] and Spark [15]

allow users to write code to perform MapReduce-like computations, which can automatically

scale to tens of thousands of nodes in high-performance clusters, and provide reliability in

the face of failures. For more general-purpose parallelism, recent Python-based libraries such

as Parsl [16] and Dask [17] aid users in performing parallel executions of arbitrary functions,

with automatic scaling on clouds and clusters.

In addition, the last decade has seen an increasing number of efforts to allow users to

write code that can execute not only on CPUs of different shapes and sizes, but on truly

heterogeneous device architectures, such as GPUs, FPGAs, and ASICs. Ever since Nvidia’s

release of Compute Unified Device Architecture (CUDA) [18], which allows users to program

GPUs for general-purpose uses, there have been new frameworks developed to simplify the

lives of application developers. Ideally, a developer should only need to write code once and

be able to run this code on an array of heterogeneous architectures. Initial work towards

this goal was presented as OpenCL [19], which provides a unified template of writing code
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for a variety of CPU, GPU, and ASIC designs. In the domain of deep learning, the popular

libraries, Tensorflow [20] and PyTorch [21], allow users to write a single version of code for

training and using deep neural networks that transparently transitions between using CPUs,

GPUs, and in the case of Tensorflow, even TPUs [22]. Even more recent work has aimed

towards extending these “write-once-execute-many” capabilities to more general-purpose

computations. For instance, HeteroDoop [23] is a programming framework that extends

MapReduce semantics to automatically make use of GPUs. Libraries such as Kokkos [24] and

RAJA [25] provide a unified syntax for users to write C++ code that can seamlessly compile

to a variety of different CPU and GPU architectures using carefully designed optimizations

during compilation. While these unified programming capabilities are not strictly necessary

for using heterogeneous devices, the convenience they provide significantly lowers the barrier

to entry for developers to use specialized hardware.

Of course, being able to program heterogeneous devices is only one half of the battle.

For our work, it is also essential to be able decide which type of device a computation

should run on. Although there has not been much work on such decision-making in the

context of function-serving, this problem has been explored to some depth in the more

general context of high-performance computing. The problem of scheduling applications

has long been known to be NP-complete, although efficient heuristic-based strategies have

been proposed for heterogeneous settings. These strategies are often based on choosing

resources which provide the earliest expected finish time for a task [26]. More recent work on

heterogeneous scheduling [27, 28] has focused on using historical execution time of workloads

on heterogeneous machines to create greedy scheduling strategies which try to maximize

throughput and minimize application runtimes.
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2.3 Function-as-a-Service

Function-as-a-Service (FaaS) is a relatively new paradigm of computing that allows its

users to think at the abstraction level of functions. With a computing model based around

(remote) function calls, FaaS users only need to write the code for their applications — all

other aspects of execution are taken care of by the FaaS platform. Recent years have seen

the introduction of FaaS capabilities from all popular cloud providers, including Amazon

Lambda [10], Google Cloud Functions [11], and Microsoft Azure Functions [12]. Some of

these also provide variations of their FaaS platforms that are more suited to distributed IoT

use-cases, such as Amazon Greengrass [29]. As one would expect, each of these platforms

provides support for a range of languages and “triggers”, i.e., events that can cause a function

execution to occur. With the exception of some remarkable investigative work [30], not much

is known about the internal workings of these closed-source platforms.

Several open-source FaaS solutions have been developed, each aiming to solve different

variants of function-serving problems. Some notable examples are as follows. The Open-

Lambda project [31] seeks to explore directions similar to Amazon Lambda, but in the open-

source community. OpenLambda’s research agenda includes investigating the best execution

engines for serverless computation, supporting a wide range of languages and packages, and

optimizing performance with improved database guarantees and load-balancing. Apache

Openwhisk [32] provides a flexible model that allows “events” to be triggered by a spectrum

of popular web-services, where each such trigger can be associated to (stateless) functions

via user-defined rules. OpenWhisk provides support for deployment both locally and in the

cloud, using multiple containerization options. OpenWhisk serves as the backbone of IBM

Cloud Functions [33]. Kubeless [34] is a FaaS platform that is built for deployment on Ku-

bernetes clusters, allowing users to take advantage of Kubernetes’s container-orchestration

mechanisms. Kubeless replicates the interface of Amazon Lambda, uses Apache Kafka for

messaging, and allows users to group functions for more efficient resource usage.
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2.4 Scheduling Functions

While we are not aware of any prior work on building a complete model of function

scheduling, optimizing different aspects of function execution has been a major focus in

recent FaaS research. One of the most common issues that plagues FaaS platforms is cold-

start latency, i.e., the initial overhead of setting up containers, dependencies, and executors

when executing a function [35]. According to a recent investigation [30], all popularly used

FaaS systems suffer from cold starts. For instance, Azure shows cold-start latencies of up to

3500ms, whereas AWS uses the optimized Firecracker virtualization [36] and likely maintains

a set of “warm” virtual machines, thus hiding some cold-start costs. Often, cloud providers

let allocated machines run idle for long periods (sometimes many hours), to account for

the possibility of incoming function executions in the future. Other work has explored this

cold-start problem from a different angle. The authors of SOCK [37] developed containers

optimized for serverless execution with the goal of minimizing start-up costs. SOCK’s virtu-

alization techniques employ a minimal subset of the features of general-purpose containers

like Docker [38], thus allowing for fast instantiation of containers. SOCK also uses zygote

processes to run Python code with different package dependencies. By maintaining a col-

lection of zygote processes with different packages imported, SOCK is able to minimize the

initial import latencies of loading Python packages. With additional caching optimizations,

SOCK is able to achieve 2-3x faster cold starts than AWS Lambda.

Recent work has also tried to optimize function executions by improving function colo-

cation and resource usage. It has been discovered that some cloud providers (like AWS) pri-

oritize colocating executions of the same function, whereas others (like Azure) do not [30].

SAND [39] is a FaaS system designed to decrease the latency of communication between

functions of the same application and increase resource utilization. SAND achieves these

goals by running functions within application sandboxes, so that functions of the same ap-

plication are executed close to each other. This, coupled with a hierarchical mechanism for
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communication between functions, allows SAND to provide low-latency chaining of function

executions. FnSched [40] is a system that reduces resource costs by maximizing utilization

while meeting service-level objectives (SLOs). FnSched meets these objectives by carefully

regulating the resource usage of function executions, and making informed decisions about

scaling up resources when the task load increases. More specifically, FnSched assigns cpu-

shares to each executing container, which can be regulated to provide containers more or less

resources in order to meet execution requirements. There has also been some work on meet-

ing SLOs in heterogeneous computing environments. For instance, a probabilistic method of

task pruning has been demonstrated [41], which involves using a function’s execution history

to predict whether a task will meet its SLO or not. In cases where a task is likely to be

delayed, the task is dropped, allowing for other tasks to complete sooner.

While the results mentioned above tackle various aspects of efficient function schedul-

ing, none of them provide a holistic model of function execution. However, such a model is

necessary to fully account for all the different aspects of computation in a federated hetero-

geneous environment. Our contributions in this work include providing such a model and

later applying it to build a framework for fluid function execution.
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CHAPTER 3

PROBLEM DESCRIPTION

In this chapter, we briefly outline our research agenda, and introduce some formalism

for thinking about the problem of choosing the best location to execute a computation. We

then describe how we model a task’s execution time, and list the assumptions we make.

3.1 Research Questions

We seek to answer the following questions in this work:

(1) How can we design a system that can transparently dispatch computations to

heterogeneous computing resources?

(2) What information is required to make decisions about performance trade-offs

between these resources? How can we capture this information and use it to place

tasks on these resources?

(3) Can we understand what “good” scheduling decisions look like? Which features

of realistic computations determine where they should be run?

3.2 Problem Formulation

Consider a set of endpoints, {EP1, . . . ,EPn}, that we can run functions on. We receive

an incoming stream of tasks of the form (f, x, data) where f is a function (that has been

previously registered with Delta), x is a function input, and data is a list of files (on the

requesting machine or elsewhere) that are needed to perform the computation. As we will

see, this formulation of computation is simple enough to lend itself to predictive analysis,

yet complete enough to model the execution and data needs of real-world computations.

There are many possible objectives we could try to optimize for when choosing where to

run these tasks (e.g., minimizing data movement, maximizing resource utilization, etc.) —
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this is simply a matter of policy. In this work, we focus on scheduling tasks across our n

heterogeneous endpoints while minimizing their time-to-completion.

3.3 Modeling the Continuum

We break the execution of a function down into several smaller components, which when

put together, model the different time costs associated with running a particular task on a

particular endpoint. Running f(x, data) on an endpoint EP involves the following time costs:

(1) Scheduling Overhead: Time taken by Delta to make a scheduling decision and

queue a task for execution. Call this tsched.

(2) Cold-Start Latency: Time taken to allocate a node, start a container, and load

package dependencies for f, if the endpoint is not already warm. Call this tcold(EP, f).

(3) Pending-Tasks Delay: Time taken for all previously scheduled requests on EP to

finish.1 Call this tprev(EP).

(4) Function Transfer Time: Time taken to transfer f and x from Delta to EP. Call

this ttrans(EP, f, x).

(5) Data Transfer Time: Time taken to transfer each input file in data from its source

to EP. Call this ttrans(EP, data).

(6) Runtime: Time taken by EP to run f on input x and data, producing output res.

Call this trun(EP, f, x, data).

(7) Result Transfer Time: Time taken to transfer res from EP to Delta. Call this

ttrans(EP, res).

Thus, the total time to execute f(x, data) on an endpoint EP is the sum of the quanti-

ties above. So, if one could accurately predict these components, choosing an endpoint to

1. Since tasks are executed in FIFO order on the endpoint.
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minimize the time-to-completion for a task would be a matter of evaluating the following:

argmin
1≤i≤n

 tsched + tcold(EPi, f) + tprev(EPi) + ttrans(EPi, data)

+ ttrans(EPi, f, x) + trun(EPi, f, x, data) + ttrans(EPi, res)


3.4 Assumptions

We restrict the scope of the problem with the following simplifying assumptions:

(A1) Functions being requested have deterministic runtimes. So that their runtimes

lend themselves to prediction, when given necessary information like function inputs.

(A2) Each endpoint runs one task at a time, in first-in-first-out (FIFO) order. To give

tasks unobstructed access to an endpoint’s resources.

(A3) Each task runs only on one endpoint (as opposed to running concurrently on

multiple endpoints). To disallow, for now, additional complexities in scheduling.

(A4) There are no inter-task execution dependencies. We leave the scheduling of work-

loads with multiple inter-dependent functions to future work.

(A5) We are only concerned with minimizing execution time of individual tasks. We

do not optimize multiple tasks together, and we leave the accounting of money, energy,

task priorities, etc. to future work.

(A6) The overhead of scheduling a task, tsched, is a constant. This is true in practice

for all “reasonably” sized functions, since the funcX overhead remains consistent.

(A7) The cost of communicating functions to and results from different endpoints,

tsched(EPi, f, x)+ttrans(EPi, res), is a constant. Any differences in communication times

to different endpoints are on the order of a few milliseconds, which is negligible com-

pared to all function executions we will be requesting.
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CHAPTER 4

DESIGN AND ARCHITECTURE

We now present the design and architecture of Delta, a framework for heterogeneous func-

tion execution that learns function behavior in order to make robust scheduling decisions.

While Delta could be extended to support arbitrary scheduling policies, its current imple-

mentation focuses on minimizing the execution time of incoming tasks. To do this, Delta

performs multidimensional trade-off analysis, taking into account factors such as compute

time, data transfer time, cold-start time, as well as other execution latencies.

4.1 Background

Delta builds upon funcX [2], a federated FaaS platform, as well as Globus [42], a research

data management platform that supports high-performance third-party data transfer. We

first provide some necessary background about these platforms.

4.1.1 FuncX

funcX [2] consists of a central orchestrating service, which communicates both with funcX

endpoints (which execute tasks) and funcX clients (which request tasks). In order for a user

to execute a function via funcX , they must first set up one or more endpoints on machines

that they have access to. When an endpoint is registered with the funcX service, it is

assigned a universally unique identifier (UUID), henceforth known as an endpoint-id. The

process of setting up an endpoint is authenticated via Globus Auth [9], which is subsequently

used to ensure that only users who have authorization to access an endpoint can run tasks on

it. Once a user has set up an endpoint, they can immediately start running functions on it.

All aspects of function execution happen via a FuncXClient that a user must initialize (by

authenticating via Globus Auth). The FuncXClient is first used to register a function. At
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the time of registration, the function’s body is serialized and sent to the main funcX service,

which returns to the user a UUID, henceforth known as the function-id. When a user wants

to run a function on some input, they must provide the function-id of a previously registered

function, the endpoint-id of an endpoint to which they are authorized to access, and the

input on which they would like to execute the function. We will refer to this combination of

a function, endpoint, and input as a task. The funcX service returns to the user a unique

task-id, which is then used by the user for tracking a task’s status. All communication

between the FuncXClient and the central funcX service occurs via an HTTPS-based REST

API. This greatly simplifies funcX ’s design since no state needs to be maintained for these

communications. On the other hand, this means that funcX does not (currently) provide

a blocking mechanism that waits until a task is finished — instead, all the user can do is

query the funcX service to check whether a task has finished executing.

The funcX service communicates with an endpoint via a manager process on the end-

point, which is responsible for allocating incoming tasks to one or more worker processes.

When a user requests a task to be sent to an endpoint, the funcX service sends the serialized

function body and function input to the endpoint’s manager process. Upon receiving this,

the manager forwards it to one of its workers. The worker, upon receiving this task, dese-

rializes the function body and function input, runs the function on the input, serializes the

result and sends it to the manager. From here, the result is forwarded to the funcX service,

where it is added to a task database. The next time the user’s client polls for this task’s

status, this result is returned to the client.

funcX is built with the aim of running computations on a range of devices, from personal

desktops and edge devices to clouds and supercomputers. To this end, funcX employs Parsl’s

provider interface [16], with which it is able to request and manage compute resources with

a wide range of user-specified configurations. funcX also features multiple scaling strategies,

allowing it to allocate more or fewer nodes based on the incoming stream of tasks on an
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endpoint, as specified by the user’s scaling parameters.

4.1.2 Globus

Globus is a research data management platform that, among other capabilities, provides

data transfer [43] and identity and access management [9] capabilities. These capabilities

are offered via a central Globus service which can be accessed both via web browsers as well

as via a software development kit (SDK). Users and administrators can enable Globus data

management on a storage system by deploying Globus Connect software on them, thereby

turning them into Globus endpoints. This can be done both for personal machines (such as

laptops) and for shared machines associated with dedicated server systems. For high-access

server systems, Globus allows multiple machines to serve as data transfer nodes (DTNs),

which not only yields increased transfer performance, but also more reliability with dynamic

failovers. In either case, setting up Globus endpoints transforms storage devices into data

management junctions that are able to transfer data efficiently and reliably.

Globus’s highly performant methods of third-party data transfer are orchestrated by its

central service. The Globus service is responsible for the entire process of executing a transfer,

from authentication at the source and destination, to creating channels for transfer via the

GridFTP protocol [8], and using checksums and recovery mechanisms to ensure the integrity

of the data being moved. The Globus platform can be accessed through its expansive REST

API, which is used by client libraries such as Globus’s native Python SDK, allowing easy

interfacing with third-party applications.

Globus endpoints enforce the file-access permissions of their underlying systems. Globus

sharing allows for file-access decisions to be made by the Globus service. For instance, it is

possible to specify access control lists (ACLs) for file paths [43]. These ACLs are enforced

automatically by Globus when accessing and transferring files. Globus Auth [9] handles

authentication and authorization by securely interfacing between identity providers, clients,
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and server endpoints. This authentication can be integrated with third-party applications to

allow them to perform actions on behalf of users, within the bounds of specified permissions

(e.g., for moving a user’s files). Thus, Globus’s transfer capabilities are not only performant,

but also properly authenticated and robust, which makes Globus an appealing choice for

data transfers in dynamic grid-like environments.

4.2 Prediction

As described in Chapter 3, the key insight upon which we base Delta’s prediction design

is to break up the total execution time for a task into several smaller components (such

as runtime on an endpoint, transfer time, etc.). The advantage of this approach is that,

compared to the entire execution time of a task, each of these smaller components is much

easier for prediction models to learn. This is due to two reasons: first, that each of these

components is specific enough that we can hope to apply specialized prediction techniques

(including existing ones), and second, that for each of these components, it is easy to identify

the (small) subset of features that are necessary for prediction. Moreover, adopting a modular

approach to prediction allows us to readily swap out one predictor for another without any

substantial changes to our infrastructure.

4.2.1 Function Performance

Perhaps the most conspicuous aspect of using heterogeneous devices is the observation

that for every computation, there are some devices for which it is well-suited, and others

which are less so. Yet, the question of whether a particular device is a good choice to

run a computation does not admit a binary answer. Function performance varies across

heterogeneous devices on a spectrum. Figure 4.1 shows how some simple every-day workloads

perform on different devices, including Raspberry Pis, desktop computers, clusters, and GPU

nodes (see Section 5.1 for a description of these different devices). The workloads shown are
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as follows. The first is an embarrassingly parallel computation that divides up work across

parallel processes (map-reduce). This computation performs best on machines with a large

number of CPU cores. The second is a matrix multiplication workload that multiplies two

square matrices (matmul). This computation performs best on GPUs, and is significantly

worse on even powerful CPUs. The third involves reading and writing large files (file-I/O).

This computation performs best on machines with faster disk speeds and CPUs.

Figure 4.1: Relative throughputs of tasks on heterogeneous machines, with values normalized
to the maximum throughput observed for a task.

Thus, it becomes clear that in order to predict the total execution time of a task, it is

crucial to take into account the capabilities of the device on which the task is executed, since

the executing device can greatly affect the task’s runtimes, sometimes by multiple orders

of magnitude. In order to predict task runtimes on different types of devices, we could

consider either a white-box approach or a black-box approach. A white-box approach would

likely involve using tools such as static analysis of function code and a precise accounting

of the specific capabilities of each device (e.g., number of cores, memory, architecture, etc.).

We believe there is a lot of potential for white-box predictions of function runtimes, but
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this is a difficult open problem which ultimately distracts from our central goal of building

a complete model for the computing continuum. We leave more sophisticated methods of

function runtime prediction to future work, and focus here on a black-box approach where the

only information we use is a function’s execution history, including its inputs and observed

runtimes on different devices.

The challenge of predicting trun(EP, f, x, data) is thus reduced to building an online pre-

dictor that uses a list of data points of the form (xi, datai, trun(EP, f, xi, datai)), collected

from all previous instances where f was run on EP. To this end, we created two comparable

runtime-prediction strategies:

• Rolling-Average: A baseline strategy, which completely ignores the inputs given to the

function, and only looks at a rolling average of runtimes for previous executions of the

function on each endpoint.

• Input-Size: Often, the runtime of a function depends heavily on the input provided.

To model this, we created a strategy that looks at the inputs to a function and tries to

find a correlation between the size of the input and the observed function runtime. For

this, we use online polynomial regression. Every r observations, the model is retrained

on the entire execution history of the function (where r is configurable).

Of course, being black-box methods, both prediction strategies need data to learn from, i.e., a

function’s execution-history on different endpoints. As we will describe in Section 4.3.6, this

data is gathered by an initial “exploration” phase where we try newly registered functions

on different endpoints to gather performance information.

An immediate criticism of these strategies would be that they involve maintaining and re-

training a sizeable number of models (i.e., one model for each pair of function and endpoint).

As we see it, there are two types of transfer-learning approaches which would alleviate this

problem. First, cross-function learning, i.e., using the execution history of one function to

help predict runtimes for a different function. This would fit in well with the white-box
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strategies briefly alluded to above, and is left for future work. Second, cross-endpoint learn-

ing, i.e., using the execution history of a function on one endpoint to help predict its runtime

on another endpoint. This approach benefits from the following observation: devices with

similar capabilities are near-perfect predictors of runtimes on each other. Here, capabilities

refers to a combination of the device’s available memory, disk types, CPU cores, the pres-

ence of specialized accelerators, and so on. As is evident from Figure 4.1, the runtimes on

the 3 Raspberry Pis are excellent predictors for each other, as are runtimes on the GPU

machines, as are the runtimes on the manycore machines. We used this insight to modify

the runtime-prediction strategies described above by categorizing endpoints into endpoint

groups (e.g., the 3 Raspberry Pis in one group, the 2 GPUs in another group). Learning

and prediction can thus be done for endpoint groups instead of individual endpoints. Other

than reducing the number of models being tracked, another benefit of this modification is

that learning occurs faster, since it is no longer necessary to observe every function on every

endpoint. This led to more accurate predictions more quickly.

4.2.2 Data Transfers

Often, function performance is the strongest factor one tends to consider when selecting

a device on which to run a computation. But of course, a function’s runtime is only one part

of the cost associated with executing a function on a remote endpoint. One of the largest

counteractive factors is the time it takes to move the requisite task-execution information

to the remote endpoint. This involves not only the latency of communicating with the

endpoint, but also the cost of transferring additional data in cases where the function needs

to act upon a non-trivial amount of input data — for example, image-processing tasks such

as facial-recognition, or the analysis of sensor data collected by edge devices. As described

in Section 4.3.3, one of our contributions involves building an automated mechanism (using

Globus) to move input files to funcX endpoints for function execution. Thus, it is necessary
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for us to be able to predict how long data transfers to and from each endpoint will take.

Figure 4.2: Historical data-transfer rates to and from Petrel [44], a large-scale data service
for use by scientists.

Figure 4.2 shows historical Globus transfer times for Petrel [44], a large-scale data service

deployed at Argonne National Laboratory, and other Globus endpoints distributed around

the world. It is interesting to note that, up to a few MB, transfer times remain about

constant (around 5 seconds). For such small transfers, the effective transfer rate observed

seems to grow linearly with the size of the data. After around 100 MB, the transfer rate

seems to plateau (in this case, at about 100 MB/s). This trend is explained by the overhead

of conducting a Globus transfer, including interactions with the Globus service, setting up

communication channels, and computing checksums for files.

We must note that Petrel has been carefully designed for optimizing movement of data.

Moreover, being a high-performance data service, Petrel is comprised of several high-performance
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DTNs, as well as network connectivity that is likely orders of magnitude better than that

of a personal desktop computer. Transfer speeds depend not only on the effective network

bandwidth and latency between two devices, but also the memory and networking capabili-

ties of the devices; a powerful desktop connected to the local network via Ethernet will likely

show higher transfer rates than a less powerful edge device connected via WiFi. Thus, much

in the same way that we could not use a simple one-size-fits-all approach to model func-

tion performance, we cannot use a one-size-fits-all approach to model transfer times between

different pairs of endpoints.

That said, similar to our analysis of function performance, what we can do is group

endpoints by the set of features which affect transfer times. We grouped the endpoints in

our testbed by their physical and network locations, as well as by the amount of memory

they have. We then measured, for each such pair of transfer groups, how transfer rates scaled

with data size. Figure 4.3 shows some of our findings. As hypothesized above, we do see that

transfer rates vary greatly based on the source and destination of the transfer. Transfers

between two desktop computers on a local network are much faster than transfers from this

local network to an AWS instance in Virginia. On the other hand, transfers between AWS

and the Chameleon cluster at Argonne are incredibly fast — likely due to sophisticated

network infrastructure on both ends.

Having collected this transfer data, we built regression models to predict this logarithmic

relation for each pair of source and destination transfer groups. The predictions of our

models are shown in the dotted lines in Figure 4.3. Thus, we are able to predict transfer

times reasonably well. These models were the ones used for transfer time prediction in our

scheduling system described later. The fact that almost all of the transfer rate curves have

the same shape (linear growth followed by plateauing) might suggest that it is possible to

model these transfer times without having to train and maintain a regression model for

each pair of endpoint transfer groups. Instead, one could hypothesize building a “universal”
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model of transfer time prediction, which takes as input certain features of the source and

destination (such as location, networking capabilities, etc.), along with the size of the data.

Indeed, there is some recent work that tries to explain how these different features can be

used to explain transfer times [45]. This would indeed be quite useful and a welcome addition

to Delta, but is beyond the current scope of our work.

4.2.3 Cold Starts

The cold-start problem is a well-known and well-documented problem in FaaS litera-

ture [37, 2, 30], and lies at the core of why the scheduling of functions is quite different

from the scheduling of jobs in HPC clusters. On the one hand, function executions require

starting nodes, instantiating containers, and loading dependencies, much like regular HPC

jobs. On the other hand, function executions are usually short-lived, triggered frequently,

and often in need of low-latency responses. Thus, as the designs of almost all FaaS systems

can attest to, it is impractical to incur the entire “cold start cost” — of acquiring nodes,

containers, and package dependencies — for every function execution.

Contemporary FaaS systems have taken varied approaches to this problem, from keeping

“pre-warmed” nodes [10, 32, 30] to applying optimized container technologies [37]. But for

our purposes, the goal is not to explicitly reduce cold-start latencies, but to be able to predict

them when they do inevitably occur. To this end, we treat cold starts as a sequence of three

consecutive steps: node acquisition, container instantiation, and package loading.

The first of these, the acquisition of nodes (e.g., in an HPC cluster), is not only the slow-

est factor, but also the hardest to predict. Queue times are highly variable, depending on

factors including (but not limited to) cluster capacity, cores requested, walltime requested,

and the job-scheduling strategies employed by the system administrators. Figure 4.4 shows

how queue wait times varied for cluster-jobs on Argonne National Labortory’s Theta su-

percomputer [46], when plotted against the number of cores requested and the amount of
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Figure 4.3: Data-transfer rates between Globus endpoints in our testbed (see Section 5.1).
The circles represent medians of measured values, and our model’s predictions are shown by
the dotted lines. The two desktops are on the UChicago CS department’s network, Midway
is a cluster run by UChicago’s Research Computing Center (also in Chicago), the Chameleon
cloud is at Argonne National Laboratory, and the AWS instance is located in Virginia.
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time requested. As is evident from this figure, it is not immediately obvious that queue

wait times are predictable by simply looking at the features of a requested job. In fact,

the wait times for jobs with similar requirements can sometimes differ by multiple orders of

magnitude. This, along with the fact that queue times are incomparably large in relation to

function execution times, leads most FaaS system designers to side-step this problem. This

is often done by keeping a collection of “warm” nodes running at all times. For our work,

we will assume that all our endpoints either do not need to wait for node allocation (e.g.,

edge devices and desktop computers), or in case they are in HPC clusters, they are already

running on warm nodes.

Figure 4.4: Observed queue wait times for jobs requested on Theta [46], a supercomputing
cluster run by the Argonne Leadership Computing Facility.

The second component of cold-start latencies is the cost of starting containers. As before,

when functions need to be executed inside containers, it does not make sense to start a

new container for each execution. Instead, different approaches have been documented to

direct incoming tasks to already-running containers [30, 39, 40]. Even these approaches,

however, are not completely devoid of container cold-start costs. When increasing load

requires spinning up new containers, the first few function executions often require cold

starts. Thus, it is important to be able to predict the latencies these cold starts will incur,

to improve our function scheduling decisions. Moreover, as Table 4.1 shows, the cold-start

latencies for different types of containers vary significantly across machines. These differences
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are often attributed to a combination of differing clock-speeds and file-system contention in

different systems [2]. Yet again, we encounter the problem of heterogeneous devices providing

heterogeneous results.

System Container Min (s) Max (s) Mean (s)

Theta Singularity 9.83 14.06 10.40

Cori Shifter 7.25 31.26 8.49

EC2 Docker 1.74 1.88 1.79

EC2 Singularity 1.19 1.26 1.22

Table 4.1: Replicated from funcX [2]. Cold container instantiation times for different con-
tainer technologies on different resources.

Figure 4.5: Replicated from SOCK [37]. Download and installation latencies for the most
common Python packages.

The third component of cold-start latencies is the cost of loading dependencies, which,

for us, means Python packages. This includes the latency of downloading, installing, and

importing packages. The authors of SOCK [37] measured these costs for the most popular

packages — their results are replicated in Figure 4.5. We see that this component of cold-

start costs is quite substantial, especially for short-running tasks for which low-latency is

of utmost importance. As one might expect, these costs too vary from device-to-device.

Figure 4.6 depicts the time taken to import some common Python packages on the different

devices in our testbed — one can expect download and installation costs to vary similarly.
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Figure 4.6: Import latencies for some common Python packages on our heterogeneous array
of devices. Download and installation latencies can be expected to vary similarly.

These are easily predictable quantities, so accounting for these package-loading latencies is a

matter of tracking which dependencies exist on each endpoint, and which ones are required

for each function. We describe how we do this in Section 4.3.4.

4.3 System Architecture

Having described the design of the various predictors used by Delta, we now describe

Delta’s architecture (shown in Figure 4.7). We wanted to build Delta on top of funcX

without modifying any of funcX ’s underlying execution fabric. Indeed, we were able to

achieve this goal. This is noteworthy in two regards. First, that our development process

was orthogonal to that of the funcX team, allowing existing users and developers of funcX

to operate as usual. Second, and more importantly, this indicates that it is possible to

extend existing FaaS systems without major changes to build a computation ecosystem that

automatically takes into account heterogeneity.
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Figure 4.7: Delta’s architecture, including different components of the scheduling service,
and the communications required to execute functions.

4.3.1 Continuum-as-a-Service

The main component of Delta’s architecture is a scheduling service — hereafter referred

to as the Delta service — that serves as a proxy for the central funcX service. Instead

of communicating directly with the funcX service, clients are configured to communicate

with the Delta service. The Delta service responds to requests (almost) exactly how the

funcX service would. To do this, it forwards requests to the funcX service when needed, for

example, to register functions or request a task’s status. Whenever a task is requested to

be executed, the Delta service uses its scheduling strategies (described later) to choose an

endpoint, and forwards the task request to the chosen endpoint via the funcX service.

The Delta service maintains various components to enable task tracking, runtime predic-

tion, data transfers, and endpoint monitoring, as described in subsequent sections.
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4.3.2 Client Wrapper

We created a wrapper for the FuncXClient — hereafter referred to as the Delta client

— to allow for some necessary functionality that had to be added to the client. The Delta

client is different from the regular FuncXClient in the following ways:

• When a user asks to register a function func, instead of registering func with the

service, the Delta client wraps the function with code to record the start and end

times of the function’s execution and returns them as part of the function’s return

value. This is how function runtimes are measured. Of course, before returning results

to the user, the actual result of func is extracted from the larger returned value.

• When asking to run a function on an input, the user does not need to specify an

endpoint to run on. As mentioned above, the endpoint is filled in by the Delta service

before forwarding the task request to funcX .

• When asking to run a function on an input, the user may optionally provide a list of

files along with the Globus endpoint(s) on which these files are located. This list of

files is forwarded as part of the function execution request, and will be transferred to

the destination endpoint before function execution by the Delta service. Note that this

does not restrict the files to originate from the requesting client’s device.

• The Delta client tracks all pending tasks on the endpoint and runs a TaskWatchdog

thread in the background. This TaskWatchdog regularly polls the service to inquire

about the status of each pending task. This is necessary since funcX function execu-

tions are asynchronous and funcX does not provide a mechanism to wait on a result

in a blocking way. It is crucial for Delta to receive results as soon as they are ready

without depending on the user to query a task status, both so that it can learn to

predict runtimes, and so it can keep track of which tasks are still running on each

endpoint (described in more detail in Sections 4.3.5 and 4.3.6).
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4.3.3 Automated File Transfer

funcX [2] places limits on the size of the input data that can be submitted as part of

a task request, for reasons of scalability. It would be much harder to design the central

funcX service if we allowed users to submit inputs of arbitrarily large sizes, since in this

case, the funcX service would have to not only store large amounts of input data for tasks

that have been requested, but would also struggle to efficiently communicate with endpoints

due to large message sizes which would be sent to endpoints. Moreover, data transfers can

often be unreliable, especially since funcX endpoints can be set up on arbitrary machines

connected by arbitrarily unreliable networks, which would compel funcX designers to build

efficient and reliable data transfer infrastructure. Finally, it does not seem sensible to create

a bottleneck for data transfers by making all data go through a central service. It would

make more sense to move data directly from its source to the destination endpoint.

Motivated by this line of reasoning, we looked to Globus [42], since it is an existing

system that has managed millions of wide-area data transfers around the world. Globus

provides high-performance data transfers using parallel data streams and other performance

enhancements, ensures the integrity of transferred data by comparing checksums, and in-

cludes a comprehensive security model that enables authentication at both source and des-

tination as well as encryption of the data channel. Moreover, Globus supports third-party

data transfers, which can be orchestrated by the Delta service.

In order to enable endpoint-to-endpoint transfer of data, we deployed a Globus endpoint

on every machine where we had a funcX endpoint.1 The Delta service maintained a mapping

between funcX endpoints and their corresponding Globus endpoints. We supplemented the

Delta service with a TransferManager component which is responsible for coordinating data

transfers with the Globus service. When a new task is submitted to the Delta service with a

1. Note that, at the time of writing, Globus does not support machines with ARM architectures. Because
of this, we were unable to deploy a Globus endpoint on 3 of the machines in our testbed.
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list of files required for execution, Delta first chooses an endpoint to direct the task to (ac-

cording to the strategies in Section 4.3.6). Once an endpoint is chosen, the TransferManager

is instructed to transfer all the given files to this chosen endpoint, using the corresponding

Globus endpoints of the source and destination machines. The TransferManager regularly

monitors the status of the Globus transfers via the Globus API. The Globus transfer-ids of

these transfers are sent as part of the task input, so that the funcX endpoint can wait until

the transfers are complete before executing the function. Note that this is inefficient since it

does not allow other tasks to execute on the endpoint while it is waiting for data transfers.

We will describe an optimization for this in Section 4.4.2.

4.3.4 Monitoring Endpoints for Cold Starts

As Section 4.2.3 elucidates, cold starts are a significant factor that add to function ex-

ecution latency, and are especially detrimental to short-running tasks. In order to predict

cold start latencies, we need to track the status of each funcX endpoint that we can execute

on. To this end, the Delta service runs an EndpointMonitor component which regularly

communicates with each endpoint and tracks the endpoint’s status. Each funcX endpoint

is configured to send regular heartbeat messages to the service. These heartbeat messages

consist of the endpoint’s current state, including the number of pending tasks queued on the

endpoint, the number of active worker and manager processes, resource usage, etc. Since

there is a manager process on each node allocated to the endpoint, checking if there is a

warm node running on the endpoint is simply a matter of checking that there is at least

one active manager. If no active managers are reported, the EndpointMonitor marks the

endpoint as cold. This fact is used for subsequent scheduling decisions. If a cold endpoint is

chosen for execution, it is marked as warming, and once it regains an active manager, it is

marked as warm.

The EndpointMonitor also keeps track of which packages have been imported on the
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endpoint worker, so that package-import costs can be accounted for in the cold-start costs.

Tracking this requires tracking two things — the list of packages currently imported on each

endpoint, and the list of packages required by each function. The former is done by modifying

the function-wrapper that is registered (see Section 4.3.2) to also return a list of all imported

Python modules at the end of every function execution.2 The latter is done by analyzing

the function body at the time of function registration, and extracting all lines of code which

execute package imports. With these two modifications, it becomes straightforward for the

Delta service to identify all packages required by a function execution that will need to be

imported for the first time on an endpoint. Note that tracking which packages are installed

on each endpoint would require a similar modification, which we leave for future work.

4.3.5 Pending-Task Tracking

All of our endpoints are configured to execute tasks in first-in-first-out order, which means

that when a new task is scheduled on an endpoint, it must wait for all previous tasks on this

endpoint to finish executing. Thus, an essential component for execution time prediction

that we must estimate is the time at which the most recent task scheduled on each endpoint

will finish running. We refer to this as the endpoint’s pending time. For this, the Delta

service maintains a first-in-first-out queue of scheduled tasks for each endpoint. Every time

a new task is scheduled on an endpoint, its ETA is calculated — this ETA calculation takes

into account the previous estimate for this endpoint’s pending time. Upon sending the new

task to this endpoint, the endpoint’s pending time estimate is updated to the ETA of this

new task.

One possible shortcoming of this approach is that it compounds errors in ETA prediction,

which are inevitable when dealing with real-time systems. For example, if the ETA prediction

for the first task underestimates the actual execution time by 10 seconds, then the ETA

2. The built-in sys module in Python provides this functionality.
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prediction for subsequent tasks will also have an added error of 10 seconds. To avoid such an

undesirable compounding of errors, the Delta service also maintains a pending-error for each

endpoint. When there are no pending tasks on an endpoint, its pending-error is 0. When

there is at least one pending task on an endpoint, its pending-error is set to the error in the

ETA prediction of the most recent task completed on the endpoint. In other words, when a

completed task result is received from an endpoint, the endpoint’s pending-error is reset to

the difference of the task’s ETA and its actual observed execution time. This pending-error

is added onto the pending time estimate for an endpoint at the time of ETA prediction. In

this way, we at least partly mitigate compounding errors from previous predictions.

4.3.6 Choosing Endpoints and ETA Prediction

Having described the main components of our function-orchestrating system, we now

describe how the choice of endpoint is actually computed for each incoming task. Delta’s

design inherently depends on having reasonably good estimates of multiple types of cost.

Because of this, we wanted to ensure that we include modularity in the very core of our

design. Thus, our primary scheduling strategy allows for arbitrary predictors to be plugged-in

for each component described below. We briefly describe the initial predictors we have built

for our experiments. We reemphasize that these predictors are not the focus of this work,

and further enhancements will be necessary to productionize a function-serving framework

that resembles Delta.

• Runtime: We currently have two runtime predictors, as described in Section 4.2.1

— one simply uses a rolling average of past runtimes of a function on the endpoint,

whereas the other performs online polynomial regression on the size of the input to

predict function performance. As mentioned earlier, all runtime learning is done after

grouping endpoints by their capabilities.

• Data Transfer Time: Our current predictor for data transfer times relies on historical
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Globus transfer statistics between pairs of endpoints, as described in Section 4.2.2. The

endpoints are grouped by their network location and their network transfer capabilities

when predicting transfer times.

• Cold-Start Latency: As described in Section 4.2.3, we do not model the time taken

for node allocation in HPC clusters, instead assuming the existence of pre-warmed

nodes. We described how we track which packages are installed on each endpoint and

which are required by every function execution in Section 4.3.4. Using this information,

we use the data collected for import times on the different endpoints to predict the

associated latency. We do not currently account for container start-up time, but this

is an important area of future work.

• Scheduling Overhead: We observed that for tasks of reasonable sizes (including any

tasks we ran in our experiments), the overhead of the funcX service to run the task

was surprisingly consistent. Thus, we do not currently employ any clever techniques

to predict scheduling overhead, and instead, just add the observed average funcX

overhead to our ETA calculation.3

On top of this, we use the approach from Section 4.3.5 to track the pending time for

each endpoint. Recall that, as mentioned in our assumptions in Chapter 3, for simplicity,

we do not currently include the cost of transferring large results. For this, we would need to

extend our file-transfer infrastructure to allow function executions to output result files to a

Globus endpoint. This could be done by using the predictor for data transfers along with a

user-provided estimate of the size of the result.

When given an incoming task t = (f, x, data), our primary scheduling strategy, which we

call smallest-ETA, computes the sum of each of these predictions, i.e., the ETA of running

3. It would be interesting to see how funcX ’s overhead scales with batch-submission of tasks. If there
are significant differences in overhead with batch size, we would need to model this to a sufficient degree of
accuracy, especially for short-running tasks.
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t on an endpoint. It does so for each funcX endpoint, and simply chooses the endpoint

which minimizes the ETA. Now of course, in order for the (black-box) runtime predictions

to be any good, the runtime predictor must be trained on historical data points. To this end,

the first few executions of a function are sent to different endpoint groups, so as to collect

data about how the function performs on different types of devices. In a production system,

this “exploration” stage could be done offline at the time of function registration. Once this

exploration stage finishes, the strategy starts choosing endpoints as described above.

We will compare the performance of our scheduling strategy against two baseline strate-

gies, round-robin and fastest-endpoint. As their names suggest, the round-robin strat-

egy is the naive approach of simply cycling through all endpoints for an incoming stream

of tasks, whereas the fastest-endpoint strategy first goes through the same “exploration”

stage described above, after which it starts choosing the endpoint which minimizes the func-

tion runtime for a task. In Chapter 5, we will evaluate how our scheduling strategy performs

in comparison to these baselines.

4.4 Optimizations

While the description of Delta until now is complete in itself, there are many ways in

which the presented design can be improved. We now present some such improvements.

4.4.1 Local Execution

Until now, we have focused on choosing which remote endpoint a computation should be

sent to. As we have seen, the two biggest conflicting forces at action when weighing where

to run a computation are the cost of running on an endpoint, and the cost of communication

to and from this endpoint. Thus, a natural question arises — is it always necessary to incur

the cost of communicating with a remote endpoint? The answer is a resounding no. One can

easily think of workloads which would be optimally scheduled to run locally on the requesting
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device, instead of incurring the network-cost of executing on a remote endpoint. Indeed, in

addition to choosing the best endpoint for a computation, we must also be able to decide if

the computation should be run remotely at all. Only then can our model of computation be

justifiably described as fluid.

The naive approach to enable function execution on the client device would be to register a

funcX endpoint on the client’s machine, so the central Delta service may choose to execute

tasks on it. However, this approach would defeat the purpose of avoiding the latency of

running a task remotely, as every task would have to incur, at the minimum, the round-

trip network latency and the funcX scheduling overhead. This motivates the need to run

functions locally without going through a central service. Usually, this would likely be

problematic, since there is significant infrastructure required to set up a FaaS endpoint.

However, luckily, funcX is designed to execute on all sorts of devices, and so as it turns

out, it is not terribly cumbersome to build a local funcX task executor. Naturally, we

built a lightweight LocalExecutor using the same task serialization and execution semantics

as the regular funcX executor. A LocalExecutor process is (optionally) started as part

of the Delta client, and communicates tasks and results via inter-process communication,

which is significantly faster than network communication with the Delta service. Of course,

this means that the Delta client now needs to be involved in the decision process for task

scheduling. For this, the Delta client was modified to track the rolling average of the total

execution times that were seen for a function locally and remotely. The Delta client uses this

information to make the binary decision of whether to run a computation remotely (send to

funcX ) or locally (send to LocalExecutor).4

4. We could, of course, improve this decision-making process by employing similar predictors as in the
Delta service.
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4.4.2 Just-in-Time Task Submission

Back in Section 4.3.3, we described our mechanism for transferring required files to the

chosen endpoint for a task execution. This approach has a severe limitation, which is that

while a data transfer is occurring for a task, the endpoint is idle, lying in wait for the

transfer to finish. This time could be used to execute other incoming tasks, so that the

device’s available resources are not wasted. To this end, we built “Just-in-Time” submission

of tasks which required data transfers. Since the TransferManager actively coordinates the

data transfer for each task with Globus, the Delta service is alerted as soon as the transfer

finishes. Only at this time is the task actually submitted to the endpoint via funcX . Note

that while the data transfer is in progress and the task is not submitted to funcX , the task

is not accounted for in the pending time estimation for the endpoint.

Observe that since data transfers and pending task execution are now allowed to oc-

cur concurrently, we need to tweak our ETA prediction computations, so that we find the

endpoint with the smallest ETA via:

argmin
1≤i≤n

 tsched + tcold(EPi, f) + twait(EPi, data)

+ ttrans(EPi, f, x) + trun(EPi, f, x, data) + ttrans(EPi, res)


where twait(EPi, data) = max(tprev(EPi), ttrans(EPi, data)).

4.4.3 Blocking Endpoints for Functions

Functions that have uncommon dependencies or require specialized resources can often

not run on all endpoints. Of course, it is not feasible to only use the endpoints which can

run all of a user’s functions (if such endpoints even exist). Instead, we added the capability

to block specific endpoints on a function-wise basis. The Delta service was modified to

maintain per-function lists of blocked endpoints, which could be added to via API calls

37



from the Delta client. For every task-scheduling decision, Delta simply ignores all blocked

endpoints for the function in concern. Further, on top of the capability to manually block

endpoints for a function, we noticed that it should also be possible to automatically detect

some cases when an endpoint should be blocked. For instance, when running a function on

an endpoint consistently runs out of memory (e.g., a Python MemoryError), or is missing

required dependencies (e.g., a ModuleNotFoundError). When such exceptions are detected,

the Delta service automatically blocks that endpoint for the given function, thus allowing

for quick discovery of which devices are capable of running which computations.

4.4.4 Endpoint Failures and Slowdowns

A significant challenge when working with heterogeneous devices is providing reliability

in the face of device failures and slowdowns. While testing our framework, we ran into issues

where some endpoints would either stop responding completely or would take an order of

magnitude longer than expected to finish a function execution. There were many reasons

for such errors, including memory leaks causing use of swap memory, overheating (especially

for Raspberry Pis), and queuing delays on overloaded endpoints (usually the fastest ones).

To combat this, we introduced backup tasks to Delta. We made the EndpointMonitor

regularly check for two types of conditions in which backup tasks were to be sent. The first

condition is when an endpoint seems to have died. To detect this, the EndpointMonitor

was modified to track heartbeat messages coming from funcX endpoints. If no heartbeat is

received from an endpoint within a configured time-window, the EndpointMonitor assumes

that the endpoint is either dead or on the other side of a network partition. The second

condition is when a task takes significantly longer than expected (e.g., 2 or 3 times longer).

While the Delta service does indeed track ETAs for all tasks, it is important to note that

these ETAs are not always reliable, especially not during the initial “exploration” stage in

which Delta is just trying endpoints and has not learned function behavior yet. So, during
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the initial learning period for each function, being unable to trust our ETA predictions, we

choose not to send backup tasks.

Backup tasks are always sent to an endpoint other than the ones chosen previously for a

task. Multiple backups can be sent, up to a configurable max backups parameter. Of course,

the underlying funcX service cannot distinguish between a regular task and a backup task,

so we had to redesign our task-tracking mechanism, as described in Section 4.4.5.

4.4.5 Task-ID Translation

In two separate situations, we encountered a need to separate the task-ids returned to

the client from the task-ids used by the funcX service and funcX endpoints for execution.

The first situation was Just-in-Time submission for tasks, as described in Section 4.4.2. The

funcX client expects a valid task-id to be returned as soon as a task-execution request is

received by the service. However, in the case of Just-in-Time submission, we did not want to

actually submit the task for execution to funcX until the data transfer to the endpoint had

(almost) completed. Thus, we needed a mechanism for delayed task submission, without

complicating the client’s logic. The second situation was backup tasks, as described in

Section 4.4.4. In the case of endpoint failure or task slowdown, we wanted the Delta service

to be able to transparently send a replica of the task to a different endpoint, which would

improve the reliability guarantees Delta could make. This meant that for each task that the

user requested, it was possible that multiple tasks were submitted to funcX .

To solve both problems, we redesigned the task-tracking component of the Delta service,

and maintained a task-translation table. Every time a user submits a task for execution,

a virtual task-id is created and immediately returned to the user. This task is added to

an internal scheduling queue. This queue is be monitored by a task-tracking thread, which

regularly pops an incoming task off the queue and, once it is ready to be sent (e.g., once data

transfers finished), sends it to the funcX service, receiving a physical task-id. Similarly, if a
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backup (physical) task needs to be sent for a (virtual) task, the virtual task is simply added

to the scheduling queue again, and once scheduled, the task-translation table is updated.

Every time the client requests a (virtual) task’s status, the task-translation table is used to

fetch statuses for all corresponding (physical) tasks.

This change to our task-tracking mechanism allows us to transparently send multiple

copies of a task requested by a client. In such a case, we need only record the first result

that is returned by the task. Future work could explore using this mechanism to send

multiple copies of tasks which need to meet service-level objectives, in the hope of more

reliable execution times.
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CHAPTER 5

EVALUATION

We evaluate Delta in two ways. First, using micro-experiments to show that the primary

features of Delta work well in situations which are designed to highlight the need for a

holistic computing ecosystem; and second, using macro-experiments to show that Delta

yields satisfactory performance when put under load with realistic workloads, which were

inspired by existing FaaS benchmark suites [47]. These two objectives are described in

Sections 5.2 and 5.3, respectively.

5.1 A Heterogeneous Testbed

We evaluate our approach using a testbed consisting of various compute devices, which

we have assembled to model the differences one can expect to find across widely available

computing devices. This testbed, as described in detail in Table 5.1, features Raspberry

Pis, HPC clusters, general-purpose GPUs, an AWS instance, as well as several commodity

desktop computers. Thus, this testbed represents a broad range of computing resources,

from slow edge devices and desktops to high-performance cluster nodes and specialized ac-

celerators.

5.2 Micro-Experiments

We first present three experiments which highlight different features of Delta, and verify

that Delta is a system capable of transparently routing tasks to different endpoints across

the computing continuum. The first experiment demonstrates that, when asked to run a

workload that favors a particular endpoint, Delta quickly learns to send this workload to

this endpoint. The second experiment demonstrates that, when tasks involve data transfers,

Delta accounts for the cost of data movement, thus making smarter decisions than baseline
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Description
Device Info

(CPU Info, Logical Cores, Memory)
Name Count

Edge Device

(Raspberry Pi 3B)
ARM Cortex-A53, 4-core, 1GB pi 3

Slow Desktop

(UChicago CS)
Intel Core i7-3770, 8-core, 8GB slow desktop 1

Average Desktop

(UChicago CS)
Intel Core i7-6700, 8-core, 8GB avg desktop 1

Fast Desktop

(UChicago CS)
Intel Core i7-8700, 12-core, 16GB fast desktop 1

Cloud CPU

(AWS T3a.medium)
AMD EPYC 7571, 2-core, 4GB aws t3a med 1

Manycore CPU

(Chameleon)
Intel Xeon E5-2670, 48-core, 125GB manycore 2

GPU Node

(Chameleon)

Nvidia Quadro RTX 6000 GPU

(Intel Xeon Gold 6126, 48-core, 187GB)
gpu 2

Table 5.1: Our heterogeneous testbed for experiments. A funcX endpoint was deployed on
each of the 11 devices described.

strategies. The third experiment demonstrates that, when faced with endpoint failures and

task slowdowns, Delta quickly recovers and reliably completes tasks.

5.2.1 Learning Under a Small Load

Perhaps the simplest situation in which we can expect to see the benefits of heterogeneity

is when the only factor that needs to be considered is function performance. Figure 5.1 shows

the execution times observed in an experiment where we repeatedly requested a matrix mul-

tiplication computation on a regular schedule. Each function execution involved multiplying

two square matrices of size 1000x1000, fifty times. There were a total of 100 such function

executions requested, at the rate of 2 tasks per second. This can be thought of as a close

approximation for an application that regularly requests a neural-network inference.

Both the fastest-endpoint and smallest-ETA strategies spend the first few function
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Figure 5.1: Learning function performance behavior under a small load. We see that Delta
learns to send this specialized workload to the endpoints it is most suited to, drastically
reducing execution time. Note the different scale for round-robin.

executions exploring the different (groups of) endpoints in the testbed. After this, both

strategies learn to favor the most suitable endpoints for matrix multiplication (unsurpris-

ingly, these are the GPU endpoints). On the other hand, the naive round-robin strategy

performs much worse, alternating between endpoints which are slow and fast for this work-

load. Moreover, the slowest endpoints are incapable of meeting the arrival rate of tasks, and

thus function requests must be queued. This situation explains why the slowest round-robin

execution times become slower as time goes on. In summary, when not under load, it is sim-

ple to optimally schedule workloads that strongly favor a certain type of endpoint. While

the fastest-endpoint strategy performs optimally in this simple case, we will soon see that

this is not always the case.
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5.2.2 Data Transfer Trade-offs

The second major factor that contributes to the cost of function execution in our grid-

FaaS model is that of transferring data. To demonstrate this, we conducted an experiment

in which we requested a stream of tasks (of different runtimes) which required certain files

for execution. These files were located on a single endpoint in our testbed, avg-desktop.

Thus, for every execution, the Delta service had to make a decision of whether to run the

computation on this endpoint (incurring no transfer cost), or to run the computation on

a different endpoint (incurring a transfer cost). After 18 exploration tasks (1 of each size

for each endpoint group) which were used by Delta to learn function performance behavior,

we requested a total of 100 tasks, at a rate of 1 task every 2 seconds. For each task, there

were two 1KB files required for execution. Each time, the task was randomly chosen to be

one of three different computation loads — specifically, spin-loop tasks which incremented a

counter up to a value of 224, 226, or 228.

Figure 5.2 shows the results of this experiment. The round-robin strategy naively cycles

through the available endpoints, thus incurring a (sometimes quite large) data transfer cost

for all but one endpoint. The fastest-endpoint strategy also ignores data transfer costs,

and simply chooses the endpoint which has historically run each task the fastest. Since

the files were located on the avg-desktop endpoint, which has slower CPU cores than at

least 3 of the other endpoints, the fastest-endpoint strategy always chose to offload the

computation to a different endpoint, incurring small but not negligible transfer costs. On

the other hand, the smallest-ETA strategy, by taking into account transfer costs, chose to

offload the computation to a different endpoint only some of the time. Closer analysis of the

figure shows that the following pattern occurred multiple times: the avg-desktop endpoint

was chosen for execution several times, as indicated by the lack of transfer cost, until enough

pending tasks piled up (shown by the growing size of the purple bars), at which point it

became favorable to offload the next task to a different endpoint and incur a transfer cost.
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Figure 5.2: Accounting for the cost of transferring data as part of function executions.

We note that, even though transfer time predictions are often imprecise due to ever-changing

network conditions, we only need rough approximations to be able to make these trade-off

decisions.

5.2.3 Tolerating Failures and Slowdowns

Our next experiment showcases how Delta automatically detects task delays and endpoint

loss, and sends backup tasks to other endpoints to improve the chances of task completion.

The details of this experiment are similar to those in Section 5.2.1 — a constant stream

of matrix multiplication tasks at the rate of 1 task every 3 seconds. Each task consisted

of multiplying 50 different pairs of square matrices, of size 2500x2500. Note that for this

experiment, we used only one of the two GPU endpoints, in order to demonstrate what
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happens when an accelerator fails and recovers. After the 30th task, the gpu-1 endpoint was

taken offline, and after the 60th task, it was brought back online.

Figure 5.3 shows the results of this experiment. Note that only the smallest-ETA strat-

egy is shown. As usual, the first few function executions are spent in exploration, after

which, the execution time is consistently small. Since the period from task 30 to task 60 is

quite small, the Delta service does not observe a missed heartbeat from the gpu-1 endpoint.

However, it does see task delays for each of these tasks. When the Delta service hasn’t

received results for these tasks in more than twice the expected execution time, it sends

backups for these tasks to other (noticeably slower) endpoints. After task 60, gpu-1 resumes

responding to task requests as expected, and so, execution returns to normal.

Figure 5.3: Tolerating failure of endpoints and slowdown of tasks with automatic delay-
detection and backup tasks.

5.3 Macro-Experiments

The experiments in this section aim to show how Delta performs when subjected to high

levels of load, with tasks being scheduled in large “bursts” (as FaaS platforms are often

subject to), as opposed to in a gradual stream of incoming requests. The first experiment
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shows how throughput and time-to-completion vary when many copies of the same task are

run. The second experiment shows how the size of input must be taken into account when

making scheduling decisions. The third experiment shows that Delta performs well when

subjected to multiple different types of tasks at the same time.

5.3.1 Overloading Tasks

As opposed to the Micro-Experiments described above where it is often optimal to send

tasks to the fastest endpoint, when under load, we would expect a smart scheduling system

to distribute tasks across endpoints in a way that maximizes task throughput, while keeping

the execution time of each task low. To put this to the test, we designed the following

experiment. We requested 500 tasks, in bursts of 50 at a time, where each task was an

embarrassingly parallel Map-Reduce computation. Each function execution first kicked off

as many concurrent processes as there were CPU cores on the machine, and then evenly

distributed work amongst them. Here, the computation for each execution consisted of

counting up to a total of 108 between the parallel processes.

Figure 5.4 shows the results of this experiment. We see that the round-robin strategy

struggles to keep the average execution time of tasks low, since it simply cycles through end-

points and inevitably hits slowdowns when it sends tasks to the slower endpoints. While the

fastest-endpoint strategy provides a slightly better task throughput than round-robin,

its median task execution time is, in fact, higher than that of round-robin. This is because

whereas the round-robin strategy naively balances load amongst the different endpoints,

the fastest-endpoint strategy sends all tasks to the endpoint which provides the fastest

runtime for the function in concern. This leads to tasks quickly piling up on this endpoint

(recall that tasks are executed in FIFO order), which explains the higher median time-to-

completion. The smallest-ETA strategy does not suffer from such ailments since it takes

into account pending-task predictions for each endpoint. We see that, after the first batch
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(in which it explores all endpoint groups), the smallest-ETA strategy consistently keeps

the time-to-completion for tasks low. On the flip side, the smallest-ETA strategy also

consistently shows a task throughput that is several times higher than the other strategies.

Figure 5.4: Overloading Delta with MapReduce tasks shows that, compared to baseline
strategies, ETA prediction significantly reduces time-to-completion and boosts throughput.

The above results don’t explicitly demonstrate how tasks are distributed across the end-

points. Moreover, it is important to ask the question of what it means for a sequence of

scheduling decisions to be “optimal”. To take a step towards this question, and with the
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goal of explainability, we ran the same experiment as above, but with the simplest possible

task — spin-loop, which simply involves incrementing a counter up to a certain value (of

108). Figure 5.5 shows the distribution of tasks per endpoint produced by the smallest-ETA

strategy in this case. The figure also shows the relative speeds with which each endpoint

can run this function — this is essentially just a measure of CPU clock-speed. If we were

to ignore other execution latencies for a moment, we would observe that the optimal dis-

tribution of tasks is exactly in proportion to the relative speeds of the different endpoints

for this task. Figure 5.5 demonstrates that our smallest-ETA strategy naturally reaches a

close approximation of this distribution, allowing us to claim that its scheduling decisions

are close to “optimal”.

Figure 5.5: Distribution of endpoints when the system is overloaded with spin-loop tasks,
demonstrating that when tasks are large enough that latency is negligible, ETA prediction
distributes tasks nearly optimally.

It is worth noting that the optimality of this distribution holds only if we ignore all

other execution costs (such as funcX overhead, network latency, etc.). Thus, the observed

scheduling decisions would perfectly reflect the relative speeds of the endpoints only in
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the limit case, i.e., where the task runtimes are infinitely larger than all other latencies.

Conversely, if the task runtimes are infinitely small, the optimal scheduling decision would

be to round-robin between the endpoints, since the (common) overhead would be the only

cost worth considering.

5.3.2 Input Size Trade-offs

The previous experiment demonstrated how tasks should be scheduled across heteroge-

neous endpoints when all tasks are uniform. We now consider the case where tasks are

non-uniform, specifically, when different inputs to a function result in different runtimes.

Note that this is a common occurrence that can be observed in many workloads, from con-

volutional neural-networks to operations on Pandas DataFrames. We considered spin-loop

tasks, i.e., tasks involving incrementing a counter to a given integer value, with three differ-

ent choices of input — 222, 225, and 228. We scheduled a total of 600 tasks, divided into 10

bursts of 60 tasks each. Each burst consisted of 20 tasks of each of the three input sizes, in

a random order.

The results are shown in Figure 5.6. As usual, the round-robin strategy, by ignoring all

features of incoming tasks and available endpoints, performs poorly and yields low through-

put. The variance in the observed throughput between bursts is because of the randomness

in the order of tasks. The fastest-endpoint strategy, similar to the previous experiment,

overwhelms the one endpoint which has the fastest runtime for the function, both with and

without accounting for input sizes. This is because this fastest endpoint, unsurprisingly, is

the best for each of the three sizes. The figure also shows how the smallest-ETA strategy

performs, with and without taking into account input size in its runtime predictions. With-

out considering how runtimes are affected by varying inputs, the smallest-ETA strategy

has a high variance in the observed throughput. This is because it obliviously sends tasks

to where the function has been performing well recently. Occasionally, it sends tasks to
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Figure 5.6: Running tasks with multiple input sizes shows that treating different input sizes
differently yields increases in performance. When under load, it is beneficial to send smaller
tasks to slower endpoints, even Raspberry Pis.
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the correct endpoints, but other times, it ends up sending tasks to endpoints which have

previously offered short runtimes only because they were given small inputs in the (recent)

past. When the smallest-ETA strategy takes into account task sizes, its throughput remains

consistently high.

Perhaps the most interesting part of this experiment is how the smallest-ETA strategy

distributes tasks of different sizes across the endpoints, which is also depicted in Figure 5.6.

Note that the endpoints in the figure are ordered by their speeds when running this function,

just like Figure 5.5. As the figure shows, the smallest of the tasks are sent to the slowest

endpoints, the medium-sized ones to the mediocre endpoints, and the largest tasks to the

fastest endpoints. Upon some reflection, one should note that this is, in fact, what we would

expect to happen for “optimal” scheduling. It makes sense to send the short-running tasks

to the weaker endpoints (even Raspberry Pis) because the differences in task runtimes for

these are negligible compared to other overheads. Conversely, it makes sense to send the

long-running tasks to the more powerful endpoints because the differences in runtimes across

endpoints for these tasks are quite large. So, we glean that when put under load with tasks

of different sizes, we must take advantage of even the slowest of our endpoints for improved

performance.

5.3.3 Multiple Heterogeneous Tasks

In our final experiment, we pushed Delta by subjecting it to multiple heterogeneous tasks,

each of multiple different sizes, all at the same time. In the absence of a production workload,

we developed synthetic workloads that aimed to emulate real-world FaaS applications by

sending bursts of different types of tasks, which can be thought of as coming from different

applications. The three workloads we ran were:

• Matrix Multiplication: Each task consisted of 20 multiplications of square matrices

using Tensorflow, of one of three sizes — 28, 29, and 210.
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• MapReduce: Each task consisted of starting as many parallel processes as there were

CPU cores on the machine, and then dividing between them an embarrassingly parallel

task. The task was incrementing a counter up to one of three possible inputs — 224,

226, and 228.

• File I/O: Each task consisted of writing out a file of the input size, and then reading

it back into memory, checking that the file’s contents were as expected. There were

three possible file sizes — 220, 222, and 224 bytes.

There were a total of 1000 tasks run, in bursts of 100 tasks at a time. The order of the

tasks (and inputs) was randomly shuffled at the beginning of the experiment. Figure 5.7

depicts the throughputs observed with different scheduling strategies. Note that input size

prediction was used in all cases.

Unsurprisingly, round-robin is too naive to be able to efficiently distribute tasks to the

different endpoints. The fastest-endpoint strategy learns to send each function to the

endpoint it runs fastest on, but as we have observed before, fails to account for any other

factors. Because of this, it shows high variance in throughput, getting lucky in some bursts,

and overwhelming a handful of endpoints in others. The smallest-ETA strategy quickly

learns how to allocate the bursts of tasks to endpoints, and maintains a consistently high

task throughput. Figure 5.8 shows how each of the strategies allocates tasks to the different

endpoints. round-robin of course distributes tasks evenly across the endpoints without

looking at any task features (the slightly uneven peaks are due to the random order of tasks

submitted). fastest-endpoint, as expected, overwhelms the handful of endpoints which it

determines to be the fastest for each of the 3 types of tasks. For instance, most file-I/O tasks

are sent to fast-desktop (fastest CPU and fast disk), whereas most matrix multiplication

tasks are sent to the GPUs. On the other hand, the distribution observed for smallest-ETA

is much more nuanced. The pattern shown depends on both the type of the tasks and their

sizes. We see that the smallest matrix multiplication tasks are almost exclusively sent to the
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Figure 5.7: Performance of Delta when subjected to three different types of tasks (Matrix
multiplication, MapReduce, and File I/O), each of multiple input sizes.

Raspberry Pis, whereas the longer running ones are sent to the GPU and manycore endpoints

(where Tensorflow can exploit massive parallelism). Similarly the larger MapReduce tasks

are sent to the manycore endpoints, and the larger File-I/O tasks go to endpoints with fast

disk speeds and fast CPU cores, whereas the smaller of these tasks are distributed amongst

various slower endpoints.

This experiment, along with the ones before it, underscores the claim that scheduling

function executions in an environment with heterogeneity is a non-trivial undertaking that

requires modeling the multitude of complexities involved in running a computation remotely.

While Delta achieves significant improvements over baselines, there is no dearth of potential

for further enhancements.
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Figure 5.8: Distribution of tasks across endpoints when subjected to three different types of
tasks, each of multiple sizes. Increased performance is owed to the use of both task type and
input size when choosing where to run. Note the different scale for fastest-endpoint.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Any effort to model the computing continuum must account for the many complexities

that naturally arise in heterogeneous computing environments. In the distributed function

execution setting, this means accounting for compute times, network latencies, cold starts,

queuing delays, as well as transfer times when the movement of data is required. A careful

analysis of how each of these quantities can trade-off with each other allows us to build a

model of computation that can fluidly allocate tasks while minimizing execution time.

6.1 Summary

Previous work that has focused on optimizing function execution has largely been in

homogeneous settings, whether in commercial clouds or in research environments. Since

these kinds of trade-offs only become apparent in heterogeneous grid-like settings, the need

to model them in a comprehensive manner has not been a focus of prior work. In cases

where existing function execution frameworks do provide some semblance of heterogeneity,

the choice of where to execute a function is left up to the user. Moreover, this choice is

usually made at the time when a function is registered, after which it remains fixed. But, as

our analysis has shown, the best choice of where to execute a function is constantly evolving,

and so, cannot be decided a priori.

In this work, we have presented Delta, a function-serving framework built to account for

the complexities of heterogeneous execution. Delta embraces the constantly evolving nature

of heterogeneous environments, and is able to make rapid scheduling decisions dynamically,

achieving significant performance gains over baseline scheduling strategies. Delta learns to

predict different components of function execution in an online fashion. This includes learn-

ing function performance behavior by exploring execution on different endpoints, predicting
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data transfer time based on empirical transfer information, and accounting for other laten-

cies such as cold-start times, queuing times, and communication overhead. Delta represents

a starting point in the formidable journey of coding the computing continuum.

6.2 Limitations

While Delta is the first complete effort towards capturing the fluidity of heterogeneous

function-serving environments, it has several limitations. The design of Delta is inherently

based on predicting different components of function execution. This has two immediate

shortcomings. The first shortcoming is that Delta’s performance depends heavily on the

accuracy of its various predictors. Without accurate predictions for function performance,

transfer time, and cold-start latency, Delta would not be able to schedule tasks efficiently.

This is especially concerning in cases where functions do not perform deterministically, and

so, do not lend themselves well to prediction. The second shortcoming is that Delta’s online

learning approach may not scale well. For instance, Delta’s current prediction mechanisms

for runtime and transfer time involve maintaining a sizeable number of prediction models,

i.e., runtime predictors for all pairs of functions and endpoint groups, and pairwise predictors

for endpoint-to-endpoint data transfers. This would likely become a scalability bottleneck.

The function-serving problem that Delta is built to solve is limited in its scope. Delta can

only handle individual function executions, but user workloads in FaaS environments often

involve executing multiple inter-dependent functions. This limitation restricts the complexity

of workloads Delta can orchestrate. Moreover, Delta makes strong assumptions about how

tasks are executed on endpoints. In particular, Delta assumes that each endpoint only runs

one task at a time, and that each task can only make use of one endpoint. A production

system similar to Delta will need to allow for more complex execution capabilities.

Delta is also limited by the execution objectives it is able to meet. Its current imple-

mentation is tailored towards minimizing the time-to-completion of individual tasks. An
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ideal framework for fluid function execution would allow users to choose which objective

they would like to optimize for, such as minimizing monetary cost, restricting power usage,

increasing resource utilization, etc.

6.3 Future Work

There are many directions that future work could take towards improving Delta and

realizing the vision of the computing continuum. Delta’s runtime prediction approach could

be improved and made more scalable by using (deep) transfer learning. This is based on the

hypothesis that a function’s runtimes on one device are good predictors of its runtimes on

other devices (e.g., across different Nvidia GPU models). Similarly, in a white-box model

of prediction, we could apply natural language processing techniques to learn a function’s

behavior from its similarity to previously observed functions. This would greatly reduce our

overhead of maintaining many prediction models.

Predictions for cold start latencies and data transfer times could also be substantially

improved. Delta does not currently account for the latency of container instantiation — this

would be essential to fully model cold start costs. Containerization costs would inevitably

vary across heterogeneous devices, and so, future work is needed to accurately model these

latencies. As for data transfer times, Delta currently maintains pairwise models based on

empirically observed transfer rates. In reality, transfer times are prone to variance due

to factors such as network congestion and the load on the network interface cards of the

source and destination. Accounting for these factors, and abandoning our pairwise prediction

approach for a “universal” model of transfer rate prediction would be a valuable contribution.

There will inevitably be cases where task runtimes are unpredictable, and so, Delta’s

prediction-based scheduling strategies do not perform well. Overcoming this limitation would

involve supplementing Delta with orthogonal scheduling strategies which do not share this

dependence on accurate predictions. Cluster job-management frameworks such as Slurm [48]
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have often used heuristic-based strategies that involve backfilling, which allows them to make

reasonable scheduling decisions without the need for runtime predictions. However, jobs in

such contexts are almost always provided time and resource constraints by the user. In the

cloud setting, providers like Amazon use spot-filling techniques to let users run on unused

instances, with no guarantees on allocation time [49]. It would be interesting to see if any

such heuristic strategies could be translated over to the FaaS setting.

Several modern FaaS systems provide support for chaining function executions, e.g., for

workflows that require multiple interdependent analyses. Since funcX does not currently

support such chaining, we have not explored its effects on scheduling. If our goal is to mini-

mize the execution time of a workflow consisting of interdependent functions, our scheduling

decisions must be smarter than simply minimizing the execution time of individual functions.

Existing work on scheduling computation graphs in contexts outside FaaS would likely be

useful in this endeavor. Moreover, in this work, we have assumed that tasks are to be sched-

uled in FIFO order, and that each endpoint can only execute one task at a time. If we were

to relax these assumptions and allow tasks requested within a short window to be sched-

uled out-of-order, the complexity of our function-scheduling decisions would likely increase

substantially.

Future work may also explore function scheduling in heterogeneous environments when

working with additional constraints, and when optimizing for objectives other than execution

time. The decision of where to send tasks would likely be affected by the addition of service-

level objectives, such as execution deadlines. Constraints could also be placed on the location

of execution, for example, if functions or data may only be offloaded to certain devices, for

security or legal reasons. Finally, for many use cases, it is important to not only minimize

execution time, but to also provide low monetary and energy costs. To accommodate different

notions of cost, our analysis of trade-offs would have to evolve substantially, yielding yet

another exciting avenue for future work.
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